
Secure Low Latency Communication for
Constrained Industrial IoT Scenarios

Jens Hiller, Martin Henze, Martin Serror, Eric Wagner, Jan Niklas Richter, Klaus Wehrle
Communication and Distributed Systems, RWTH Aachen University, Germany
Email: {hiller, henze, serror, wagner, richter, wehrle}@comsys.rwth-aachen.de

Abstract—The emerging Internet of Things (IoT) promises
value-added services for private and business applications. How-
ever, especially the industrial IoT often faces tough communica-
tion latency boundaries, e.g., to react to production errors, realize
human-robot interaction, or counter fluctuations in smart grids.
Simultaneously, devices must apply security measures such as
encryption and integrity protection to guard business secrets and
prevent sabotage. As security processing requires significant time,
the goals of secure communication and low latency contradict
each other. Especially on constrained IoT devices, which are
equipped with cheap, low-power processors, the overhead for
security processing aggregates to a primary source of latency.
We show that antedated encryption and data authentication
with templates enables IoT devices to meet both, security and
low latency requirements. These mechanisms offload significant
security processing to a preprocessing phase and thus decrease
latency during actual transmission by up to 75.9 %. Thereby they
work for well-established security-proven standard ciphers.

Index Terms—Security and privacy, Internet of Things, Cyber-
physical Systems

I. INTRODUCTION

In the Internet of Things (IoT), small embedded devices
sense their environment to, e.g., increase the level of automa-
tion in surgeries, realize safe autonomous driving with car-to-
car communication, or enable future decentralized smart grids.
In the industrial domain, facilities and production lines are
equipped with embedded IoT devices to increase automation,
enhance monitoring, predict machine failures, track individual
parts, and realize safe human-robot interaction. These advance-
ments have the potential to significantly increase productivity
and safety as well as decrease costs and production error
rates [12]. To fully leverage this potential, IoT devices must ex-
change gathered information with other IoT devices [38], e.g.,
to trigger actuator actions. Especially in industrial IoT scenar-
ios, such communication is often challenged by low latency
requirements in the order of some milliseconds [23], e.g., to
quickly react to production errors [2], realize safe human-robot
interaction [37], or react to fluctuation in smart grids [29]. To
address the challenge of low latency requirements, especially
when considering the embedded and resource constrained
devices in industrial IoT deployments, current state-of-the-
art approaches apply special protocols with highly optimized
time-slot based scheduling and priority classes [42].

While meeting latency requirements already presents a
challenge on its own, the problem exacerbates considering
the security requirements prevalent in the industrial IoT, e.g.,
to protect business secrets, prevent infiltration, and avoid

sabotage [13], [15], [33]. Already providing this secure com-
munication on its own is challenging for IoT devices due to
their severely constraint resources: They face limited process-
ing power provided by cheap and energy-efficient processors
operating at a frequency of a few MHz. This limited processing
power presents a challenge for secure communication as
cryptographic building blocks such as encryption require sig-
nificant processing times, which are already in the same order
as boundaries for latency. Thus, strong communication security
considerably increases communication latency. Achieving low
latency but also secure communication is thus a vital but also
largely contradictory goal in the industrial IoT.

In traditional Internet communication, different approaches
aim to reduce the impact of secure connection establishment
on latency [8], [20], [30], [31], e.g., to improve web browsing.
Also in the IoT, different approaches aim to reduce high
connection setup times [19], [21], which are often prohibitive
for devices with low computational power. While these ap-
proaches focus on the secure connection establishment, we ar-
gue that the orthogonal problem of improving latency of secure
communication, i.e., actual transmission of data over a secure
channel, is of peculiar relevance for the resource-constrained
industrial IoT: Since communication in the industrial IoT is
typically periodic with a static set of communication partners,
we observe a tendency for long-lived connections to overcome
long connection setup times. As a result, the encryption and
authentication of communicated data become major impact
contributors to latency. In fact, as we show in this paper,
encrypting and authenticating a message of about 650 byte
using well-established and security-proven standard cryptog-
raphy takes more than 20 ms on an embedded IoT device,
failing to meet latency constraints of industrial scenarios such
as factory maintenance, production lines, and smart grids.

In this paper, we tackle the challenge of enabling well-
established secure communication in industrial low latency
scenarios despite severe resource constraints of IoT devices.
Our key idea is to leverage preprocessing to efficiently en-
crypt and authenticate payload for already established secure
connections. Specifically, our contributions are as follows:
• We show that latency in secure industrial communication

with long-lived connections is dominated by encryption and
authentication processing (Section II) and discuss the related
work on improving latency (Section III).

• We present antedated encryption and fast authentication
with templates, our two approaches to decrease latency



for secure communication in the constrained industrial IoT
(Section IV). Our evaluation shows that we are able to
reduce communication latency by up to 75.97 % and enable
secure low latency communication with well-established
and security-proven standard ciphers (Section VI).

• Surveying latency requirements of industrial IoT use cases,
we provide a classification of low latency scenarios based
on communication payload sizes and corresponding latency
boundaries (Section V), which is relevant also beyond the
immediate scope of this paper.

II. SECURITY SIGNIFICANTLY IMPACTS LATENCY

The industrial IoT consists of a huge amount of IoT devices,
e.g., to equip each production part with an own monitoring
device. Hence, to keep deployment costs low, these devices
typically base on cheap low-energy processors with limited
processing capabilities, provide limited memory, employ low-
power communication chips that provide 802.15.4 connectiv-
ity, and may be powered by batteries [12], [14]. To counter
these constraints, these IoT devices typically operate adapted
communication and security protocols that are specifically
tailored to these limited resources [16], [24]. In the following,
we specifically focus on the security protocols prevalent in
industrial IoT deployments and show that the required process-
ing operations for secure communication impose significant
challenges when striving to stay within latency boundaries.

A. Secure Communication in the IoT

Secure communication ensures confidentiality and integrity
of transmitted data using encryption and authentication. These
security mechanisms can be realized at different layers of the
network stack and thus different scopes of communication:
Security at the transport layer establishes end-to-end security
between applications, network layer security secures commu-
nication between systems or securely interconnects networks,
and link layer security protects one-hop communication.

Common among security protocols across these layers is
that their operation can be divided into two distinct parts:
(i) secure connection setup which includes the exchange of
cryptographic keys and authentication of remote peers and
(ii) encryption and authentication of network packets based on
the cryptographic keys derived during the connection setup.
While each connection is set up only once, encryption and
authentication are performed for each sent network packet.

To secure the transport layer, constrained IoT environments
commonly rely on DTLS [32] as it can operate on unreliable
transport protocols such as UDP [24] in contrast to the
heavyweight reliable transport protocols used with TLS in the
traditional Internet. Similarly, IoT devices that employ network
layer security first set up secure connections with lightweight
protocol adaptations such as minimal IKE or HIP DEX,
which restrict functionality to a bare minimum to account for
constraints of devices and low-power 802.15.4 networks [21],
and then protect the confidentiality and authenticity of IP
packets with IPsec [18]. Finally, the 802.15.4 standard [22]
defines encryption and data authentication for the link layer,

but relies on other means, e.g., secure out-of-bound exchange,
to set up cryptographic keys and authenticate communication
partners [28]. In the following, we analyze the effects of the
two distinct protocol parts, i.e., secure connection setup and
the protection of payload, on communication latency.

B. Connection Setup Latency

To set up secure connections, i.e., derive cryptographic
keys and authenticate peers, IoT devices rely on public key
cryptography. The cryptographic operations required for this
pose severe challenges for constrained devices and hence lead
to latency in the order of seconds [20]. This overhead renders it
impossible to meet the low latency requirements of industrial
IoT scenarios in the order of milliseconds (cf. Section V).
As a result, IoT devices in low latency scenarios typically
establish long-term connections such that the overhead of
connection establishment occurs only once and before latency-
sensitive data needs to be transmitted. Hence, the continuous
encryption and authentication of data is the primary security-
related source of latency for constrained industrial IoT devices.

C. Encryption and Data Authentication Latency

Cipher computations clearly account for the majority of pro-
cessing required for encryption and data authentication. The
state-of-the-art cipher, both in the Internet and the constrained
IoT, is AES. AES encrypts data in blocks of 16 byte and
employs different block modes to enable encryption of data of
arbitrary length. Block modes use multiple AES operations and
data combination strategies to transfer plaintext to ciphertext.
Commonly used block modes are the counter mode (CTR) and
the cipher-block chaining mode (CBC), which also features
data authentication (CBC-MAC). Devices can combine such
modes to encrypt and authenticate data. For example, CCM
mode [27] combines CTR encryption with CBC-MAC for
authentication and is especially suited for resource constrained
IoT devices as it can be implemented extremely memory-
efficient. Consequently, the security protocols in the IoT (cf.
Section II-A) all support AES CCM.

Considering computation overhead, AES encrypts a 16 byte
data block in multiple rounds, each requiring numerous
XOR, memory shift, and memory copy operations to com-
pute a round-based key and alter the unencrypted plaintext.
Due to encryption of single blocks, an IoT device requires
dlen(packet)/16e of these heavyweight AES operations to en-
crypt a complete network packet. Furthermore, encryption and
authentication typically require independent AES operations.
Consequently, an IoT device performs two AES operations
to secure each 16 byte block, one for encryption and another
for data authentication. In industrial low latency scenarios, as
discussed in more detail in Section V, this requires 2 - 8 AES
operations for small packets (4 - 50 byte) and 32 up to 126
AES operations for larger packets (200 - 1000 byte).

A Zolertia Z1, which is a typical constrained IoT device as
it is equipped with a 16MHz msp430 CPU and employs AES
hardware acceleration on its CC2420 transceiver chip, requires
up to 2.6 ms to protect data in small packet scenarios and even



up to 32.3 ms for scenarios with larger packets. While the Z1
provides AES hardware acceleration, many IoT devices even
come without such support, further increasing the processing
overhead for security operations. Thus, even after a secure
connection has been established, security processing accounts
for significant latency in embedded industrial IoT scenarios.

III. RELATED WORK

We classify related work for improving security mech-
anisms to decrease communication latency into approaches
that improve the establishment of secure connections and
newly approaches based on novel fast ciphers. Furthermore,
we discuss work that enables low latency medium access.

Session resumption is a mechanism to speed up secure
connection establishment by re-using security information
of a previous connection [9], [31]. Adoptions that address
resource constraints enable the use of session resumption in
the constrained IoT [21], [44]. From a different perspective,
IoT devices can offload the heavyweight establishment of
secure connections to a more powerful device and afterwards
retrieve the security context to secure their connections [20],
or distribute public key computations to multiple network
entities [34], [35], [40]. Furthermore, rigorous compression
of security protocol packet structures can reduce transmission
times [19], especially when considering multi-hop commu-
nication in low-power local area networks. Finally, public
key cryptography variants that base on elliptic curves can
reduce handshake computation times [5]. All these approaches
have in common that they optimize the establishment of
secure connections. However, in constrained low latency IoT
scenarios, connections are established only once and used
over a long period of time (cf. Section II-B). Hence, in our
scenario, it is more important to optimize the latency impact
of encryption and data authentication, as these operations have
to be performed for every single network packet.

From a different perspective, several approaches propose
new ciphers that are specifically crafted for fast computa-
tion [3], [4], [17], [25], [40]. These approaches have in
common that they have not gained sufficient attention with
respect to cryptanalysis and attack vectors so far. However,
in industrial settings, a single data breach can have disastrous
effects on enterprise’s reputation or cause legal liability, e.g.,
when attackers can obtain business secrets of clients. Further-
more, industrial setups easily exceed 10 years of operation and
hence require long-term security guarantees. Thus, we argue
that industrial use cases require the use of standardized, well-
established, and security-proven ciphers such as AES. As a
result, we deliberately focus on realizing secure low latency
communication scenarios based on AES.

Apart from security processing, also the medium ac-
cess layer, which handles access to the shared wire-
less medium, significantly impacts latency. Notably, well-
established contention-based approaches, e.g., distributed co-
ordination function in WiFi, even lead to unpredictable la-
tencies, since the recovery from collisions highly depends on
random backoff times. Orthogonal research thus aims at a low

time

Sensor Data Retrieval

Preprocessing

time

Online phase

Security Processing (SP)

Packet Processing

Security Preprocessing SP* Latency Saving

(a)

(b)

Fig. 1. Traditionally, security processing happens after sensor data re-
trieval (a). To save latency, we offload operations to a preprocessing phase (b)
and only perform non-preprocessable operations (SP*) in the online phase.

latency medium access based on scheduling approaches [6],
[39], [41], [43], where the main challenge is to provide a
guaranteed low latency bound of a few milliseconds. How-
ever, such approaches typically do not consider the notable
time overhead required for security operations, which add an
additional latency of a few milliseconds for constrained IoT
devices. In this work, we focus on minimizing the impact of
securing network packets on latency and thereby complement
the efforts for low latency medium access.

IV. ACCELERATING IOT SECURITY PROCESSING

The processing required for securing payload significantly
impacts communication latency in the industrial IoT (cf.
Section II). As depicted in Figure 1a, the root cause of the
resulting high latency is the security processing required for
preparing data for transmission, which can only be started after
the data to be transmitted, e.g., a sensor reading, is known. To
realize secure low latency communication in the industrial IoT,
we propose to perform significant preprocessing of security
operations before data transmission is triggered (cf. Figure 1b).
More specifically, we present the complementary mechanisms
antedated encryption and data authentication with templates,
based on the well-established and security-proven cipher AES.

Our approaches leverage the upfront knowledge of security
session parameters such as cryptographic keys in long-term
connections. We specifically target the most prominent block
modes CTR, CBC, and CBC-MAC of AES, which also enables
us to enhance CCM processing. As we detail in the following,
antedated encryption pre-processes the cryptographic opera-
tions of CTR (Section IV-A), while templates speed up CBC
and CBC-MAC processing (Section IV-B).

While the general possibility to preprocess CTR and
CBC/CBC-MAC is well-known [7], optimizations of secure
communication latency so far focused on connection estab-
lishment [5], [19]–[21], [34], [35], [40], special hardware such
as GPUs to preprocess AES CTR [36], or fast instruction sets
such as AES-NI [11]. In the industrial IoT with constrained
resources, such hardware is unavailable and long-lived connec-
tions require the optimization of payload transfer rather than
connection setup. To the best of our knowledge, the benefits of
preprocessing CTR and CBC-MAC for low latency scenarios
in the constrained industrial IoT have not been studied so far.

A. Antedated Encryption
With antedated encryption, we offload the heavyweight

cryptographic operations of the AES CTR mode to a pre-
processing phase. To this end, we leverage the property



Pr
ep

ro
ce
ss
in
g ctr0

p0

c0

⨁ p1

c1

⨁ p2

c2

⨁ p3

c3

⨁

AES AES AES AES

cipher stream (cs)

ctr1 ctr2 ctr3

Fig. 2. Antedated encryption offloads AES operations to a pre-processing
phase. Only fast XOR operations remain for the actual packet encryption.

that CTR computes a preprocessable cipher stream which is
finally XORed with the plaintext to obtain the corresponding
ciphertext. More specifically, a device that employs AES CTR
for encryption splits the plaintext p into blocks p1..n of 16 byte
(AES block size). To encrypt one plaintext block pi to a ci-
phertext block ci, the device uses the key k and counter values
ctri to compute ci = AES(ctri, k)⊕ pi. Thereby, it sets the
first counter value ctr1 to an initialization vector (IV), which it
negotiates with the communication partner, and derives further
counter values ctri+1 by incrementing ctri.

As shown in Figure 2, we split the CTR mode algorithm into
two phases: (i) the heavyweight calculation of a cipherstream
csi = AES(ctri, k) and (ii) the lightweight final XOR step
to obtain the ciphertext ci = csi ⊕ pi. With antedated encryp-
tion, we precompute the heavyweight cipherstream creation
before the data to be sent is known. To this end, antedated
encryption leverages that the key k is set up during connection
establishment and thus already known for the long-term con-
nections. Furthermore, devices select the IV themselves or can
determine it based on the security protocol specification [27].
Thus, antedated encryption can precompute the cipherstream
csi=1..n, such that only the lightweight XOR operations are
performed at the time of transmission (cf. Figure 2).

1) Security Considerations: By design, antedated encryp-
tion offers the same level of security as CTR. Most impor-
tantly, CTR requires that each pair of key and counter is
only used once [27]. This property is not specific to antedated
encryption and cannot be assured if the same key is used to
send and receive data as counter values of messages in transit
are unknown. To avoid this problem, devices must employ
different keys for each sending direction, as generally applied
by security protocols such as DTLS [32].

2) Selecting the Length of the Precomputed Cipherstream:
For efficiently applying antedated encryption, choosing an
appropriate length n of the precomputed cipherstream cs1..n
is important, as not all protocols allow to apply a continuous
cipherstream across different packets. Hence, while a too short
cipherstream does not fully exhaust the potential for latency
savings for longer packets, a too long cipherstream may waste
computational resources. This is unproblematic for the direct
application of CTR, which allows to freely choose the IV for
each packet (as long as it does not repeat). In this setting, we
can encrypt a packet with the first x < n blocks using cs1..x
and the next packet with the consecutive blocks starting with
csx+1, i.e., using ctrx+1 as the IV, thus efficiently utilizing all
precomputed cipherstream blocks.

IV ⨁ p1(s) ⨁ p2(s) ⨁ p3(v) ⨁

MAC

p4(v)

AES AES AES AES

Preprocessing
Fig. 3. We preprocess static data blocks pi(s) to require less AES operations
in the online phase which then only performs AES for variable data pi(v).

In contrast, AES CCM does not allow to freely choose
the IV for each packet. Instead, CCM uses a distinct part of
the IV as a counter for individual blocks within one packet,
which is reset for each subsequent packet, i.e., it does not
count onwards across packets. Hence, a packet cannot use
unused blocks of a cipherstream of a previous packet as the
IV would not match. To counter this issue, we suggest to
apply knowledge on past packet sizes to predict the required
cipherstream size of future packets to reduce unnecessary
preprocessing. As communication patterns in the industrial
IoT are often repeating, past knowledge is well-suited to
predict future message sizes. Alternatively, by revising the IV
selection to count onwards across packets, similar to a proposal
for GCM mode [36], we can enable the use of a cipherstream
across different packets even when using CCM mode.

B. Fast Data Authentication with Templates

In contrast to CTR mode, CBC-MAC does not allow for
a pre-computation of all AES operations, as each step of
the computation requires knowledge of the transmitted data.
More specifically, to obtain the CBC-MAC, the IoT device
computes ci = AES(ci−1 ⊕ pi, k) where c0 is set to the IV.
The final ciphertext block cn is then taken as the CBC-MAC.
Consequently, this mode does not allow for precomputation as
each ci depends on the previous ci−1 and thus the payload pi−1

which contains the data that should be transmitted and is not
known a priori. This is a vital property for using cn as a MAC
and, thus, cannot be relaxed to meet latency requirements:
If changing any pi would not change cn, an attacker could
modify the message in transit without invalidating the MAC.

Still, we can leverage the specific structure of messages
in the industrial IoT to precompute some ciphertext blocks.
More specifically, messages often consist of static data, e.g.,
header fields, that does not change across different messages
and is thus predictable. Prominent examples include header
information (we take a closer look at Goose and PPMP in our
evaluation) as well as fixed parts in the encoding of sensor
readings such as type-length-value encoding. As we show in
Figure 3, these fixed bytes form blocks at the beginning of a
message (templates) which we process before the actual data
transmission is triggered. The length t of such a template is
determined by the position of the first byte in p1..n that is not
known upfront, i.e., typically the first value obtained from a
sensor reading. As AES operates on blocks of size 16 byte, a
template of length t byte enables us to precompute the CBC-
MAC over the first T = bt/16c blocks. Consequently, as soon
as the data to be transmitted is known, the IoT device only has
to compute the CBC-MAC over the remaining n− T blocks.



Template (preprocessable)

Header T L V T L V T L V

Header T L T L T L V V V

Template (preprocessable)

Fig. 4. Sorting fixed data to the front, e.g., in the case of type-length-value
encoding, increases template size and thus also achieved latency reductions.

As IoT devices preprocess templates per packet, they can
easily adapt the template to changes in the static data, e.g.,
protocol headers. For industrial settings, we argue that IoT
devices have sufficient knowledge on packet data to derive
templates for preprocessing as we will exemplify for the Goose
and PPMP protocols in Section VI-B.

When applying templates to speed-up CCM, we must con-
sider that CCM includes the message length into the IV used
to calculate the CBC-MAC. As discussed in Section IV-A2,
IoT devices can predict message lengths, especially when they
periodically transmit the same data. Alternatively, an adapted
IV construction that does not include the length would relief
IoT devices from this prediction.

1) Increasing Template Size to Amplify Latency Savings:
Our evaluation (cf. Section VI) shows that the template size
is a critical factor that influences the efficiency of our tem-
plating approach as larger templates allow for preprocessing
of a larger number of blocks and hence fraction of MAC
operations. We observe, however, that the possible maximal
template size is heavily impacted by the encoding of packets,
e.g., if non-predictable data is interleaved with static packet
parts that could – in principle – be included in a template.
This occurs, e.g., when the application layer protocol encodes
data in type-length-value (TLV) encoding as we illustrate in
Figure 4. The standard TLV encoding (top of Figure 4) mixes
static header, type, and length information with unpredictable
actual data. As a result, the first value field makes it impossible
to add following type and length fields to the preprocessable
template. Re-sorting the packet fields (bottom of Figure 4)
leads to a larger template size and potentially saves more la-
tency. To this end, IoT devices can predict the type information
from repeated reporting or request cycles and derive the length
information from the typically known sensor output format
(e.g., integer). The effectiveness of our proposed re-sorting
strategy scales with the amount of sensor readings included
in a packet, i.e., more encoded sensor readings in one packet
allow us to create a larger template by re-sorting packet fields.

V. LOW LATENCY SCENARIOS IN THE INDUSTRIAL IOT

As a foundation for a detailed evaluation of antedated
encryption and templating, we derive a comprehensive clas-
sification of low latency scenarios in the industrial IoT. We
consider this classification to be valuable beyond our security-
focused work, e.g., when designing network protocols or
devising general network topologies for this domain.

We distinguish secure low latency scenarios alongside two
classification metrics: (i) the latency boundaries that a scenario

TABLE I
CLASSIFICATION OF IOT LOW LATENCY USE CASES.

small payload large payload

re
la

xe
d

la
te

nc
y

· condition monitoring [2] · logistics automation [2]
50 B; 100 ms 300 B; 15 - 20 ms

· process automation [2] · factory maintenance [2]
80 B; 50 - 3000 ms > 200 B; 20 ms

lo
w

la
te

nc
y

· packaging [10]
15 B; 5 ms · smart grid [29]

· printing [10] 200 - 1521 B; 8 ms
30 B; 2 ms · augmented reality [2]

· production lines [2], [37] > 200 B; 10 ms
20 - 50 B; 1 - 12 ms

must meet and (ii) the size of network packets as larger packets
require more security processing and thus potentially increase
latency. As we assume that all scenarios use state-of-the-art
cipher and key lengths, we explicitly abstract from security
requirements as a potential additional classification metric.

As a basis, we conducted a literature research to gather
latency requirements and packet sizes of real-world scenarios.
Based on the results, we identify four classes of IoT communi-
cation scenarios which we present in Table I. In the following,
we discuss these four classes and the individual scenarios.

Relaxed Latency / Small Payload: First, the least challeng-
ing scenarios have comparably high latency boundaries and
only need to transmit small payloads. For example, condition
monitoring, a special subclass of automated diagnosis, repeat-
edly reports data of up to 50 byte with a latency requirement
of 100 ms [2]. Similarly, process automation in chemistry or
process engineering, e.g., melting or separation processes,
must transmit packets of less than 80 byte within latency
boundaries of 50 ms up to a few seconds [2].

Relaxed Latency / Large Payload: Such rather relaxed
latency requirements initially appear less challenging for se-
cure IoT communication. However, when constrained IoT
devices must meet these latency boundaries while transmitting
comparably large packets around 200 - 300 byte, security
processing in the order of 10 ms already adds a large amount
of latency leaving small time for other network processing and
transmission. One example in this class is the automation in lo-
gistics which transmits packets of up to 300 byte under latency
requirements of 15 - 20 ms [2]. Similarly, automated diagnosis
and maintenance in factories transmit packets with more than
200 byte with latency boundaries starting at 20 ms [2].

Low Latency / Small Payload: The third class is charac-
terized by low latency requirements in the order of single
milliseconds. At the same time, transmitted payload is rather
small, reaching up to 50 byte. These characteristics are found
in production lines, printing, and packaging [2], [10], [37],
e.g., for fast error reporting or coordination of machines.

Low Latency / Large Payload: Finally, the most challeng-
ing scenarios require transmission of large packets (200 byte
up to a few KB) within latencies not exceeding 10 ms. A
critical scenario in this class is the protection of smart grids



16 32 48 64 80 96 112 128 160 200 400 600 800 1000

packet size [byte]

0
2
4
6
8

10
12
14
16
18

ru
nt

im
e

[m
s]

Baseline Antedated Encryption Antedated Encryption Preprocessing

Fig. 5. Antedated encryption decreases security processing in the online phase. Latency savings increase with the packet size.

against overload [29]. Damage to parts of the grid infrastruc-
ture, e.g., caused by severe storms, can quickly propagate
through the network and cause further damage, interrupting
power supply and requiring time demanding costly repairs. To
prevent cascading of failures and damage, grid stations notify
about failures within milliseconds to timely set up protecting
mechanisms. This requires packets of sizes up to 1521 byte
to reach their destination within 8 ms [29]. Other scenarios
in this class base upon augmented reality which only allows
for communication latency of about 10 ms to keep pace with
human perception [2]. Thereby, devices must transmit complex
information starting at 200 byte, e.g., videos or images, to
correctly augment the environment.

The various scenarios of different domains show the broad
requirement for secure low-latency communication in numer-
ous industrial applications. As we will show in our evaluation
(Section VI), several scenarios of the three more challenging
classes require antedated encryption and templating to meet
latency requirements for given packet sizes.

VI. EVALUATION

To show the effectiveness of our preprocessing approaches
for low latency industrial IoT scenarios, we implemented
antedated encryption and fast data authentication with tem-
plates for the AES CCM implementation of tinyDTLS and
evaluate it on a Zolertia Z1 (low power msp430 CPU with
16 MHz, 8 KB RAM, 92 KB flash, CC2420 transceiver with
AES acceleration). We depict the average processing time
over 30 runs and show 99 % confidence intervals. As the
runtime is dominated by AES operations which we offload
to the hardware acceleration instead of using the software
implementation of tinyDTLS, we believe that our results are
transferable to other implementations. Regarding the platform,
the Z1 provides a decent choice when requiring fast security
processing in industrial IoT scenarios as it uses wide-spread
and cheap components, hence decreasing costs for the millions
of devices required for the industrial IoT. In addition, despite
the cheap components, it provides AES hardware acceleration.

We first analyze the effects of preprocessing based on
synthetic benchmarks considering different payload sizes and
packet encodings. Thereby we separate between antedated
encryption and fast data authentication with templates to
highlight their respective impact on the combined latency

savings. We compare each of these approaches with the respec-
tive traditional process which does not apply preprocessing
(denoted as baseline). Based on the combined latency savings
of both antedated encryption and templating, we finally discuss
the impact on our scenarios with real-world requirements.

A. Latency Benefits From Antedated Encryption

Figure 5 shows the processing savings of antedated encryp-
tion for different packet sizes. Already for the smallest possible
size of a single AES block (16 byte), antedated encryption
reduces the overhead for encryption in the online phase
by 78.93 % or 0.21 ms. The absolute savings increase with
increasing plaintext size as more AES operations take place
in the preprocessing phase. This leads to latency reductions
of 1.15 ms for 80 byte payload up to 14.74 ms for 1000 byte.
This property renders antedated encryption still useful for
scenarios with extraordinary large packet sizes as long as
latency boundaries increase in the same relative orders. The
respective relative savings of 88.13 % and 89.90 % also slightly
increase due to the smaller impact of CCM initialization, i.e.,
set up operations before processing of the actual data.

Considering energy consumption, antedated encryption es-
sentially does not change the operations, but only relocates
the time-point of their execution. Hence, energy overheads
correlate with runtime overheads for storage and recovery
of intermediate state. To quantify this overhead, we analyze
the total runtime, i.e., combined times for preprocessing and
online phase. We observe a runtime overhead of 27.59 %
for a single block which rapidly decreases to 11.28 % for
48 byte and only 8.20 % for 80 byte. The overhead further de-
creases for increasing payload sizes, amounting to 5.36 % for
200 byte down to only 4.14 % for 1000 byte payloads. Thus,
our approach incurs some energy overhead especially for IoT
devices that transmit a high number of small packets. However,
considering the benefits of security operation preprocessing for
the challenging latency boundaries in industrial IoT scenarios,
these energy overheads are reasonable.

Although the overall runtime shows an overhead, in reality,
antedated encryption only decreases, but does not increase
latency. We distinguish two cases: First, if packet data is not
yet available, our approach preprocesses security operations
and thereby reduces latency for the online phase that takes
place when data becomes available. Second, if packet data
becomes available before preprocessing has taken place, the



16 32 48 64 80 96 112 128 160 200 400 600 800 1000

packet size [byte]

0
2
4
6
8

10
12
14
16
18

ru
nt

im
e

[m
s]

Baseline
Templating (64B)

Templating (16B)
Templating (80B)

Templating (32B)
Templating (96B)

Templating (48B)
Template Preprocessing

Fig. 6. Also templating decreases security processing in the online phase. The benefit increases with larger template sizes (denoted in brackets).

IoT device instead falls back to the traditional approach
without a dedicated preprocessing phase and thus achieves
the same latency as an unmodified system. We argue that the
first case is prevalent, as IoT devices in industrial low latency
scenarios know communication patterns and have sufficient
spare time for preprocessing as overloaded devices would not
be able to meet latency boundaries.

In summary, especially in face of the most challenging class
of low latency scenarios with high packet sizes and challenging
small latency boundaries, the significant latency savings of
more than 89 % achieved by antedated encryption help us to
realize these scenarios. We further detail the influence of these
latency reductions on our use cases in Section VI-C.

B. Effectiveness of Fast Data Authentication with Templates

Templating is only interesting for larger payloads, as a
benefit is only yielded if at least one 16 byte block is available
for preprocessing. To get an idea for reasonable assumptions
for the amount of preprocessable bytes, we analyzed protocols
used in the IoT environment for larger payloads. In particular,
we looked at the Goose protocol from the IEC 61850 stan-
dard [26] and the PPMP protocol [1]. While the former uses
a TLV encoding, the latter uses JSON for the encoding of its
messages. In both cases we were able to observe that the start
of a messages is often filled with information that is already
available at the time of preprocessing. These information
consist of data such as a device ID, the message length,
sequence numbers and a time to live indicator. In particular, we
derived that anything up to 96 bytes of preprocessable bytes
is reasonable, and possibly more if reordering of the packet
structure is an option (cf. Section IV-B1).

To evaluate the latency reductions of templating, we thus
measured MAC computation times for template sizes of 16 -
96 byte and again varied the packet size (16 - 1000 byte). Our
results (cf. Figure 6) highlight the increasing latency reduc-
tions for increasing template sizes (for a fixed packet size) as
a larger template enables us to move more AES operations to
the preprocessing phase. For example, for a 112 byte packet a
16 byte template saves up to 0.50 ms (21.99 %) and enlarging
the template size increases this saving by about 0.24 ms for
each additional AES block in the template such that a 96 byte
template saves 1.71 ms (75.85 %). We observe a doubled
saving for the first 16 byte as we preprocess two AES blocks
in the case of CCM. CCM performs an additional encryption

of information such as the message length to obtain the IV
for CBC-MAC initialization. We preprocess this encryption in
addition to the actual template data.

Varying packet sizes do not impact the absolute latency
savings, e.g., 48 byte templates always save roughly 1 ms. The
relative savings, however, depend on the template’s share of
the full packet as this determines the relative amount of pre-
processable AES operations. Thus, from a relative perspective,
templating is more effective when a large proportion of the
packet consists of the template, e.g., a 48 byte template saves
only 5.95 % of the MAC processing time for a 1000 byte
packet, but 64.45 % for a 64 byte packet.

Considering the combined runtime for preprocessing and
online computation, we observe a static overhead of 0.02 up
to 0.1 ms for templating. This overhead stems from additional
initialization as – in the online phase – the templating approach
recovers the intermediate state computed in the preprocess-
ing phase and resumes the work. Again, as we essentially
relocate the time-point of execution of operations, the energy
overhead of templating correlates with this runtime overhead.
Consequently, templating only slightly increases the energy
consumption per packet.

Despite the total runtime overhead, templating in reality
only decreases latency. To this end, similar to antedated
encryption, it falls back to the traditional processing if pre-
processable data is not available in time (cf. Section VI-A).

The effects of antedated encryption and templating are cu-
mulative and, hence, their combination yields latency savings
in the sum of the respective approaches. In the following, we
analyze the effect of these combined latency savings on our
scenarios which we discussed in Section V.

C. Preprocessing Enables Low Latency Scenarios

Finally, we tackle the question of the effectiveness of ante-
dated encryption and templating for our low latency scenarios
in the industrial IoT to show the general applicability and
benefit of our approaches. To this end, we combined both
approaches and measured the runtime for AES CCM and
template sizes of 0 (no templating), 16, 32, and 48 byte. For
each scenario, Figure 7 depicts the runtime for the standard
tinyDTLS AES CCM implementation as well as the reduced
runtime resulting from our optimizations. Each bar shows the
runtime for the minimal packet size in this scenario (bottom)
up to the runtime for the largest packet size (top). To increase



co
nd

iti
on

m
on

ito
ri

ng

pr
oc

es
s

au
to

m
at

io
n

lo
gi

st
ic

s

fa
ct

or
y

m
ai

nt
en

an
ce

pa
ck

ag
in

g

pr
in

tin
g

pr
od

uc
tio

n
lin

es

sm
ar

t
gr

id

au
gm

en
te

d
re

al
ity

0

10

20

30

40

ru
nt

im
e

[m
s]

Relaxed Latency/
Small Payload

Relaxed Latency/
Large Payload

Low Latency/
Small Payload

Low Latency/
Large Payload

Baseline
AE+T(32B)

AE+T(0B)
AE+T(48B)

AE+T(16B)
Latency Boundary

Fig. 7. Several scenarios require antedated encryption (AE) and templates (T)
to meet latency requirements. For other scenarios, they increase the spare time
available for non-security processing.

visibility for scenarios that observe only small differences in
packet sizes which results in small bars, we mark the middle
of each bar with ‘×’. If the template size is larger than the
scenario’s smallest packet size, the bottom rather shows the
runtime for the template size as a template cannot be larger
than the packet. In cases where the template size even exceeds
the scenario’s largest packet size, no bar is shown as templates
of this size cannot occur in the scenario. Similarly, the hatched
rectangle depicts the interval from the lowest (bottom) to
the highest latency boundary (top) relevant in the respective
scenario, e.g., 15 - 20 ms for logistics. In case of a single-
valued latency boundary, it appears as black horizontal line,
e.g., at 20 ms for factory maintenance.

The first two scenarios, i.e., condition monitoring and
process automation, represent the least challenging class with
high latency boundaries and small packet sizes. We do not even
depict their latency boundaries, which are above 50 ms, in the
figure to increase visibility. Both approaches do not require
our security optimizations to fulfill their latency requirements.

The more challenging scenarios with large packets and
relaxed latency, however, cannot always meet their latency
requirements with out-of-the-box security approaches. For the
80 byte packets in logistics, the standard approach still can
meet the latency requirements, but leaves only 4.88 ms for all
other processing tasks such as packet encoding and medium
access. Our antedated encryption and templating approaches
increase this valuable time for further processing to 10 -
10.26 ms depending on the template size. Furthermore, our
results highlight that for factory maintenance which must
support 200 - 1000 byte packets, the standard approach cannot
fulfill the 20 ms latency requirement for packets larger than
608 byte. However, with savings up to 56.55 % with antedated
encryption and templating, IoT devices can handle all required
packet sizes in this scenario within the latency boundary when
employing our approaches.

Considering low latency and low packet size scenarios, al-
ready standard tinyDTLS can easily secure the 15 byte packets
for the packaging scenario within the required 5 ms. However,
the printing scenario becomes challenging as security process-
ing only leaves 0.45 ms for other processing which triples

when applying antedated encryption and templating to more
promising 1.63 ms. Finally, standard security measures cannot
realize the lower-end latency requirements of production line
scenarios. With antedated encryption (and 0 byte templates),
we can at least stay within latency boundaries for packets up
to 32 byte. With 32 byte templates, antedated encryption and
templating even fully accomplish the latency boundary for all
of the scenario’s packet sizes, and thus enable this former
impossible use case.

The most challenging class of scenarios requires us to
achieve low latency for large packets. Here, neither the stan-
dard tinyDTLS implementation, nor our optimized approaches
can fulfill latency requirements for all packets. Nevertheless,
antedated encryption and templating significantly increase the
size of packets for which we can reach the latency goal.
For the smart grid scenario, standard tinyDTLS fails to stay
within latency boundaries for packets larger than 224 byte.
With our optimizations, we can meet the latency requirements
for packets up to 464 byte and even 496 byte for our largest
measured template size. Similarly, we increase the possible
size of packets for augmented reality from 288 byte possible
with standard tinyDTLS up to 608 byte. These are significant
steps towards realizing these scenarios.

In summary, a small number of less challenging scenarios
can be realized already today with standard tinyDTLS. How-
ever, more challenging scenarios such as factory maintenance,
production lines, or smart grids cannot meet their crucial
latency requirements when applying standard security mea-
sures. Here, the latency reductions achieved by our approaches
enable these scenarios to meet latency requirements for all
packets or at least significantly increase possible packet sizes.
Thereby, the scenarios are able to rely on well-known security-
proven ciphers which meet the requirements of long-term
security in long-living industrial deployments.

VII. CONCLUSION

Achieving secure low latency communication is challenging
in industrial IoT scenarios that rely on cheap and thus con-
strained IoT devices. As we showed, already the runtime for
security processing can overrun latency boundaries rendering
low latency scenarios such as factory maintenance, production
lines, and smart grids impossible.

We presented antedated encryption and fast data authentica-
tion with templates to offload significant security processing of
well-established block ciphers such as AES to a preprocessing
phase. These mechanisms achieve a reduction of security
processing by up to 75.97 % for small and up to 56.55 % for
larger packets. Together with our classification of low latency
industrial IoT scenarios, these results show that antedated
encryption and fast data authentication with templates enable
several scenarios to meet their latency boundaries. For those
scenarios that already meet low latency boundaries before, our
approaches increase the time available at other communication
layers which enables optimizations such as time-consuming
compression or relaxes requirements on low latency medium
access solutions.



While we focused our analysis on the send path, antedated
encryption and fast data authentication with templates can also
alleviate latency caused by receive path security processing.
This only requires the receiver to determine initialization val-
ues for security processing which is possible when sender and
receiver agree on a specific scheme to create initialization data
for packet security processing. As future work, we consider
it important to analyze processing cycles of industrial IoT
devices to derive optimal scheduling strategies for interleaving
preprocessing operations in the usual operation cycle.

In summary, the well-known concept of preprocessing has
a great benefit for the new domain of industrial IoT scenar-
ios enabling secure low latency communication with well-
established and security proven ciphers.

VIII. ACKNOWLEDGEMENTS

This paper has received funding from the CONNECT
project as part of the Electronic Components and Systems
for European Leadership Joint Undertaking. Our work in the
CONNECT project has received support from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement no. 737434 as well as the German
Federal Ministry of Education and Research (BMBF) under
project funding reference no. 16ESE0154. The authors would
further like to acknowledge support from the research training
group “Human Centered System Security” sponsored by the
German federal state of North Rhine-Westphalia as well as
to thank the German Research Foundation DFG for the kind
support within the Cluster of Excellence “Integrative Produc-
tion Technology for High-Wage Countries”. This paper reflects
only the authors’ views and the funding agencies are not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] “PPMP Specification,” https://www.eclipse.org/unide/specification/, last
visited on July 21, 2018.

[2] I. Aktas et al., “Funktechnologien für Industrie 4.0,” Tech. Rep., 2017.
[3] A. Baysal and S. Şahin, “RoadRunneR: A Small and Fast Bitslice Block

Cipher for Low Cost 8-Bit Processors,” in Lightweight Cryptography for
Security and Privacy. Springer, 2016, pp. 58–76.

[4] R. Beaulieu et al., “The SIMON and SPECK lightweight block ciphers,”
in ACM DAC, Jun. 2015.

[5] A. Capossele et al., “Security as a CoAP resource: an optimized DTLS
implementation for the IoT,” in IEEE ICC, Jun. 2015, pp. 549–554.

[6] C. Dombrowski and J. Gross, “EchoRing: A Low-Latency, Reliable
Token-Passing MAC Protocol for Wireless Industrial Networks,” in
IEEE EWC, May 2015.

[7] M. Dworkin, “Recommendation for block cipher modes of operation,”
NIST special publication, vol. 800, no. 38B, p. 38B, 2005.

[8] P. Eronen et al., “Transport Layer Security (TLS) Session Resumption
without Server-Side State,” RFC 5077, Jan. 2008.

[9] P. Eronen et al., “Transport Layer Security (TLS) Session Resumption
without Server-Side State,” RFC 5077, Jan. 2008.

[10] A. Frotzscher et al., “Requirements and current solutions of wireless
communication in industrial automation,” in IEEE ICC, Jun. 2014.

[11] S. Gueron, “Advanced Encryption Standard (AES) Instructions Set,”
2008.

[12] V. C. Gungor and G. P. Hancke, “Industrial Wireless Sensor Networks:
Challenges, Design Principles, and Technical Approaches,” IEEE Trans.
on Industrial Electronics, vol. 56, no. 10, pp. 4258–4265, Oct. 2009.

[13] M. Henze et al., “SCSlib: Transparently Accessing Protected Sensor
Data in the Cloud,” in AASNET, Sep. 2014.

[14] M. Henze et al., “Network Security and Privacy for Cyber-Physical Sys-
tems,” in Security and Privacy in Cyber-Physical Systems: Foundations,
Principles and Applications. Wiley-IEEE Press, Nov. 2017.

[15] M. Henze et al., “Distributed Configuration, Authorization and Manage-
ment in the Cloud-based Internet of Things,” in IEEE TrustCom, Aug.
2017.

[16] J. Hiller, “End-to-End Security for Internet-Connected Smart Objects,”
PIK, vol. 36, no. 1, Feb. 2013.

[17] D. Hong et al., “LEA: A 128-Bit Block Cipher for Fast Encryption
on Common Processors,” in Information Security Applications. Cham:
Springer International Publishing, 2014, pp. 3–27.

[18] R. Housley, “Using Advanced Encryption Standard (AES) CCM Mode
with IPsec Encapsulating Security Payload (ESP),” RFC 4309, Dec.
2005.

[19] R. Hummen et al., “Slimfit – A HIP DEX Compression Layer for the
IP-based Internet of Things,” in IEEE WiMob, Oct. 2013.

[20] R. Hummen et al., “Delegation-based Authentication and Authorization
for the IP-based Internet of Things,” in IEEE SECON, Jun. 2014.

[21] R. Hummen et al., “Tailoring End-to-End IP Security Protocols to the
Internet of Things,” in IEEE ICNP, Oct. 2013.

[22] IEEE, “Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), Apr. 2016.

[23] IEEE Standards Association, “Standards for Time-Sensitive Networking
for use in Industrial Automation Networks: Time-Sensitive Networking
(TSN) for Industry 4.0,” Tech. Rep., 2017.

[24] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the Internet
of Things: A Standardization Perspective,” IEEE Internet of Things
Journal, vol. 1, no. 3, pp. 265–275, 2014.

[25] M. Knežević, V. Nikov, and P. Rombouts, “Low-Latency Encryption
– Is “Lightweight = Light + Wait”?” in Cryptographic Hardware and
Embedded Systems. Springer, 2012, pp. 426–446.

[26] C. Kriger, S. Behardien, and J.-C. Retonda-Modiya, “A Detailed Anal-
ysis of the GOOSE Message Structure in an IEC 61850 Standard-
Based Substation Automation System,” Int’l Journal of Computers
Communications & Control, vol. 8, no. 5, pp. 708–721, 2013.

[27] D. McGrew and D. Bailey, “AES-CCM Cipher Suites for Transport
Layer Security (TLS),” RFC 6655, Jul. 2012.

[28] G. Montenegro, C. Schumacher, and N. Kushalnagar, “IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals,” RFC 4919, Aug. 2007.

[29] P. Popovski et al., “Scenarios, requirements and KPIs for 5G mobile
and wireless system,” Tech. Rep., 2013.

[30] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
IETF, Internet-Draft draft-ietf-tls-tls13-28 (WiP), Mar. 2018.

[31] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246, Aug. 2008.

[32] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347, Jan. 2012.

[33] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and Privacy
Challenges in Industrial Internet of Things,” in ACM DAC, Jun. 2015.

[34] Y. B. Saied and A. Olivereau, “D-HIP: A Distributed Key Exchange
Scheme for HIP-based IoT,” in IEEE WoWMoM, Jun. 2012.

[35] Y. B. Saied and A. Olivereau, “HIP Tiny Exchange (TEX): A Distributed
Key Exchange Scheme for HIP-based IoT,” in ComNet, Mar. 2012.

[36] G. Schönberger and J. Fuß, GPU-Assisted AES Encryption Using GCM,
2011, pp. 178–185.

[37] D. Schulze, A. Gnad, and M. Krätzig, “Anforderungsprofile im ZDKI,”
Tech. Rep., 2016.

[38] M. Serror et al., “Towards In-Network Security for Smart Homes,” in
IoT-SECFOR, Aug. 2018.

[39] M. Serror et al., “Practical Evaluation of Cooperative Communication
for Ultra-Reliability and Low-Latency,” in IEEE WoWMoM, Jun. 2018.

[40] M. B. Shemaili et al., “A New Lightweight Hybrid Cryptographic
Algorithm for the Internet of Things,” in ICITST, 2012, pp. 87–92.

[41] W. Shen et al., “PriorityMAC: A Priority-Enhanced MAC Protocol for
Critical Traffic in Industrial Wireless Sensor and Actuator Networks,”
IEEE Trans. on Indust. Inform., vol. 10, no. 1, pp. 824–835, Feb. 2014.

[42] P. Suriyachai, U. Roedig, and A. Scott, “A Survey of MAC Protocols
for Mission-Critical Applications in Wireless Sensor Networks,” IEEE
Communications Surveys Tutorials, vol. 14, no. 2, pp. 240–264, 2012.

[43] V. N. Swamy et al., “Cooperative Communication for High-Reliability
Low-Latency Wireless Control,” in IEEE ICC, Jun. 2015.

[44] T. Zimmermann et al., “SPLIT: Smart Protocol Loading for the IoT,”
in EWSN, Feb. 2018.


